
10  Powder flow and storage 
 
Pumping fluids is simple: you need a pump and some pipework. The 
higher the viscosity, the higher the pressure drop and, therefore, 
pump and energy costs. Much is known about how to characterise 
and specify a fluid system. What is the equivalent for dry particles? 
Also, tanks can be used to store liquids, but how should we store 
powders to ensure that they can be reliably used within our process? 
This is a subject that has received considerable attention over many 
centuries and is still a long way from a complete understanding. This 
chapter considers simple characterisation based on solid properties 
and a one-dimensional particle mechanics analysis. A more thorough 
description is possible by Discrete Element Analysis, see Chapter 7. 

It would be a mistake to assume that the problem is just one of 
ensuring that the powder flows in a hopper, or down a chute. There 
are many recorded instances of process difficulties due to powders 
suddenly flowing too easily! If a hopper is discharging into a process 
and suddenly the powder surges out, it is likely that it will overflow 
the process vessels and cause disruption: this is called a powder flood. 
An example of a powder flood in nature is an avalanche and it is, of 
course, potentially very dangerous. Process operators can be killed in 
a powder flood, so these must be avoided at all costs. Powder flow in 
a controlled and predictable fashion is desired. Floods are usually 
associated with aerated powders, in which gas is mixed with the 
powder and it behaves in a fluidised fashion, see Chapter 7. 

10.1 Powder properties 

An understanding of particle behaviour starts with a consideration of 
particle properties and some basic techniques to measure them. One 
of the simplest measurements is the angle of repose, which is 
illustrated in Figure 10.1, and is often assumed to be the angle that 
the hopper needs to exceed in order to assure powder flow. This may 
be acceptable for free flowing powders, and the angle is typically 30o, 
but in most cases this ignores the tendency for particles to form a 
cohesive structure depending upon how they have been treated. 
Pouring the powder into an upside down funnel and then carefully 
removing the funnel to leave the heap in place can be used to 
measure the angle. Alternative techniques include measuring the 
angle of slide and the angle of rotation, as illustrated in Figure 10.2. 

The particle size distribution has a complex effect on the angle of 
repose and a graph of the angle plotted, against the percentage of 
fines present, usually shows a minimum, see Figure 10.3. The angle of 
repose is a property of a powder that does not exist in a liquid and it 
is not a very consistent measurement for a powder because most 
powders exhibit some degree of cohesiveness. 

 

Fig. 10.1 Angle of repose 
and its possible relevance 
to hopper design 

To flow or stick? 
Property Free          Difficult 
 flowing flowing 

Size >400 µm <100 µm 
Range narrow wide 
Shape spheres needles 
Moisture not too high & 
 low* none 
Internal 
friction low high 
 
* a certain amount of 
moisture may help to 
lubricate the flow and to 
prevent any electrostatic 
attraction between particles 
from stopping the flow. 

Fig. 10.2 Alternative measures

Fig. 10.3 Influence of 
fines on angle of repose 
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The bulk density is the combined density of the powder and the 
void space (i.e. porosity see Figure 3.1). Hence the bulk density is the 
same as the mean suspension density, equation (6.12), but as the fluid 
is air its contribution to the mean density is ignored. Thus 
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However, the bulk density is a function of porosity, i.e. how the 
powder has been treated. To standardise this the tap density is used 
(BS 3483). The powder (and voids) volume is measured in a 
measuring cylinder type vessel after 0 to 800 taps and the powder 
weighed. This provides a more consistent density than the bulk. 

Another property that powders posses, but liquids do not, is that 
of dilatancy. This arises from particles resting on each other such that 
a shear plane of particles must rise vertically before it is possible for 
the plane to move horizontally, as illustrated in Figure 10.4. As the 
planes move apart from each other the porosity increases. The 
porosity at which the powder can shear is known as the critical 
porosity. Dilatancy is important for powders flowing in chutes; in 
Figure 10.5 a box is provided at the point where the powder changes 
direction, to allow for the powder to dilate, or expand. Without the 
expansion box the powder may be prevented from dilating and, 
therefore, cease to flow. 

Powders have the ability to sustain shear forces better than fluids. 
Thus, it is possible to walk on a bed of powder, such as a sandy 
beach. The weight of an object on the powder is transmitted through 
a network of contacts within the powder compact to the underlying 
base, or to the walls of a container. Hence, Archimedes’ buoyancy 
principle does not occur: the 'up-thrust' experienced by a body 
submerged, or partially submerged, is not equal to the weight of the 
material displaced. The up-thrust may be equal to the entire weight 
of the body - just like a solid surface. Unlike fluids, there isn't a linear 
increase in pressure with depth of particles. In fact, the pressure 
stabilises after a short distance and the rate of discharge from a 
hopper will, therefore, be substantially constant. The rate of discharge 
(Mp) for free flowing powders has been correlated using the following 
empirical equation 
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where B is the opening diameter and θH is the hopper half angle; i.e. 
the angle from the vertical, see Figure 10.6. Note that this equation 
does not include powder height. However, powders may form a 
stable arch over the opening and block the powder flow, see later. 

Whenever powders flow there is an opportunity for the powder to 
segregate by, primarily, size and density difference (and other 
secondary factors such as rotational inertia). This will occur in heaps, 
hoppers, mixers, conveyors, etc. By contrast, miscible fluids do not 
un-mix like this. 

 

Porosity is isotropic: i.e. 
the same in all directions, 
but the  assumption here 
is that the overall porosity 
increase is due to 
expansion in one plane 
(i.e. height).  

Fig 10.4 Two planes needing 
to dilate (open out) before 
moving 

Fig. 10.5 Expansion box 
in flow chute 

Fig. 10.6 Hopper half angle 
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10.2 Flow patterns and stress in a hopper and silo 

A hopper is the conical, or converging, section of a powder storage 
vessel; the bin is the parallel sided section, usually cylindrical or 
rectangular, and the word silo is used to cover the entire vessel. 
However, these terms are often used interchangeably. There are two 
main flow types that describe how powder discharges from a silo and 
these are illustrated in Figure 10.7. In mass flow the flow pattern is 
often described as: first in, first out and in core, or funnel, flow the 
pattern is last in, first out. In true mass flow the powder at the edges 
of the hopper has to accelerate and shear over that towards the 
centre: as it has a longer distance to travel to the discharge hole. 
Dilatancy is required at this point and the stress on the hopper is 
greatest here. 

A hopper may acceptably operate under funnel or core flow 
conditions so long as piping, or rat holing doesn't occur. These two 
terms refer to a silo in which the storage capacity consists 
substantially of stationary powder with just a hole within the silo 
taking newly deposited material from the top straight to the bottom 
and discharge. Hence, there is no net storage capacity within the silo. 
Table 10.1 compares the advantages and disadvantages of the two 
types of flow. 

Powder stresses inside a hopper may be analysed by Janssen's 
method of differential slices.  Consider a slice dz at a height z, the 
downward force (vertical pressure times applied area) is 
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The resultant solids stress (i.e. equivalent to pressure 
in a fluid and equal to force over area) is 
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Another force comes from the wall. If the horizontal stress at the wall 

is Ph and the coefficient of friction is µw, then the wall support force is 
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The weight (i.e. force) of solids in the differential slice is 
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Combining the forces: upthrust + wall friction = weight 
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The problem is in relating the horizontal with the vertical stresses, or 
pressures. If the material in the hopper is a liquid these two pressures 
are the same (Pascal's principle). However, consider a stack of coins, 

 

Table 10.1 Flow patterns in a 
silo – italicised text indicates 
preferred behaviour 

Fig. 10.7 Flow patterns 
during hopper discharge 
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one on top of another, in air. In this case the horizontal pressure is 
zero – there is no force accelerating the coins sideways, nor any 
reaction force needed to prevent this. Now, as powders have 
properties between that of fluids and continuous solid bodies (such 
as a stack of pennies), it would be expected that we could write 

vJh PkP =  

see box. This was Janssen's assumption. Substituting this simple 
relation into equation (10.6) and integrating (using integrating 
factors) results in the following equation 
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where Pvo is the pressure at z=0, called the surcharge or uniform stress 
applied at the top of the powder. For Pvo=0 and at small values of z 
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Thus, gzP bv ρ=  – a similar result to that of liquids but only for small 

values of z. At large values of z the exponential term disappears, 
hence 
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i.e. pressure asymptotes to the above uniform value. The results from 
these equations are illustrated in Figure 10.8. 

Janssen's work was important because it showed that stress is not 
transmitted in a similar way to hydraulic head, and wall friction has a 
very significant influence on the internal powder stresses. However, the 
assumption of a constant coefficient linking the vertical and 
horizontal stresses has no theoretical justification. Also, arches can be 
formed, suggesting that the surface of interest is not planar and that 
the stress in a plane is not uniform. Nevertheless, it provides a useful 
semi-theoretical analysis of stress inside a hopper. Practical 
measurements have supported the above analysis: powder stress 
does build up to a constant value within a parallel sided bin. At the 
position of the start of the hopper (converging section) the stress 
rapidly increases, see the section on dilatancy, followed by 
diminishing values as the hopper diameter then reduces to a value of 
zero at the outlet. However, measurements show that the powder 
retains some extra stress over what is expected in the hopper section 
– this is the memory effect included on Figure 10.8. 

10.3 Hopper opening and angle 

The correct design, or operation, of a hopper to ensure consistent 
(mass flow) discharge is based upon two factors: providing a steep 
enough hopper angle and ensuring that the discharge opening is wide 
enough. Laboratory tests are performed under conditions of stress 
and consolidation that are similar to that expected in the hopper. 

Fig. 10.8 Stresses inside 
a silo 

Janssen’s kJ factor 

vJh PkP =  

where kJ = 0 for coins, 
where kJ = 1 for liquids, 
and 
0 < kJ < 1 
for powders. 
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Values of the required stress to break a stable arch are deduced and 
the hopper is designed to provide these conditions with this powder. 
This is illustrated in Figure 10.9. Although most of the following text 
considers hopper design, the principles are more generally applicable 
to powder flow and characterisation than simply hopper design: i.e. 
the Powder Flow Function (PFF) or sometimes called the Material Flow 
Function, characterises the ease, or otherwise, of powder transport 
and storage. 

During the discharge of a mass flow silo there is a possibility that 
the powder flow may stop, or become intermittent, due to the 
formation of a stable arch within the hopper. The reasoning is that the 
particles interlock to form a stable arch over the opening much like 
bricks in an arched bridge. In practice, sufficient force should be 
provided by the system, if correctly designed, to break this bridge if it 
forms. Firstly, a force balance can be used to determine the 
magnitude of forces present in this powder bridge. Consider a 
hopper with an opening of diameter B and a slice of powder of depth 

∆h. If an arch forms there will be air on one side and powder on the 
other. The powder within the arch will have a yield stress; given 
sufficient stress above the arch it will break. This value of stress is 
called the unconfined yield stress (fc): unconfined because the powder is 
open to air on one side. An illustrative balance (taking moments from 
the wall) on the plane forming the arch provides the following result, 
see Figure 10.9 
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where W is the powder weight, B can be taken to be the hopper 
opening diameter and L is the linear distance that the arch can be said 
to act over. The force from the weight of powder is  
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Combining these two equations gives the following result 
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where L, and hence H(θ), is a function of the geometry of the opening. 
Thus the minimum hopper opening diameter needs to be 
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The next stage is to identify the unconfined yield stress for a powder 

inside a hopper, and to know more about the functional relation H(θ). 

10.4 The powder flow function 

We can represent the normal (σ) and shear stresses (τ) on a plane by 
an equation that describes a circle, this is the Mohr's circle. Adopting a 
coordinate system where the normal stress is plotted against the 
shear, Figure 10.10, the centre of the circle (Ce) is 

Fig. 10.9 Stable arch formed 

above the hopper outlet 
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rC += ye σ  and the radius (r) of the circle is 
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Thus, by inspection and substitution the centre is also  
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i.e. in this coordinate system, equation (10.16) provides an equation to 
represent the shear and normal stresses, which is the equation of a 
circle where the centre is given by equation (10.15) and the radius by 
(10.14). The question now becomes: can the normal and shear stresses 
on a plane be represented by the above equation?  
To answer this question the principal planes are considered, as 
illustrated in Figure 10.11. A plane of stress is resolved into two 

principal planes: where the shear (τ) and normal (σ) stresses of one 
plane are represented by two planes with zero shear acting. The 
resulting values are known as the maximum and minimum principal 
stresses, with an angle of 90o between the principal planes.  
Now, these are planes of say length l and width m, and force is the 
product of stress and area (stress is similar to pressure). A force 
balance gives: 
horizontally 
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and vertically 
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Rearranging for tan θ  and combining these equations gives 
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Fig. 10.11 Plane of interest 
resolved into two principal 
planes at right angles to 
each other – on the 
principal planes no shear 
acts. 

Fig. 10.10 Mohr’s circle 
representing shear stress 
and normal stress on a 
plane by a circle 
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i.e. the equation of a circle in σ and τ coordinates, see equation (10.16) 
above. So, the principal planes illustrated above can be represented 
on a Mohr's circle. Note that the minor principal plane occurs where 

the normal stress axis (σ) is cut at the lower end of the circle (τ=0) and 
the major principal plane is at the top end of the circle. We call these 

σy and σx respectively - see the Mohr's Circle diagram. 
The angles between planes and in the Mohr's Circle are related, as 
can be seen from the vertical and horizontal force balances on the 

principal planes (rearranged for tan θ) 
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Comparing equations (10.20) and Figure 10.12, shows that 

2θ = φ (10.21) 

i.e. the principal plane angle is half that given by the Mohr's circle. 
We have now seen how it is possible to consider an arbitrary 

plane inside a powder compact, with both normal and shear stresses 
acting on it, and resolve it into two principal planes. A Mohr's circle 
represents shear stress (on the y axis) and normal stress (on the x 
axis). Hence, we can draw the shear condition of this arbitrary plane 
on these axes and obtain the equivalent minimum and maximum 
principal plane values. This is of interest if we know the stress 
condition that will cause the powder compact to break, or fracture. It 
is argued that the stress of interest is the maximum principal stress 

(σx): this represents the maximum stress consolidating the powder, 
i.e. giving it strength. Also of interest, for the purpose of breaking the 
powder compact, is the unconfined yield stress – again a maximum 
principal plane stress. The latter is obtained from the Mohr's circle 

 

Fig. 10.12 Mohr’s circle with 
angle by inspection 
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that must also go through the origin. Before we see this in practice we 
should consider the Mohr's circle a bit further. 

If we increase the normal, or shear stress, on a powder the Mohr’s 
circle representing it will become bigger, see Figure 10.13. If we know 
where the yield locus lies, then the circle can only become bigger 
until it touches the yield locus. Note that if we treat powder compacts 
as Coulomb solids the yield locus cuts the shear stress axis (i.e. does not 
go through the origin) and usually has a small positive gradient. For 
a given powder compact the maximum principal stress can be 
obtained by drawing a Mohr circle that is tangential to the yield locus 
at the upper end. The corresponding unconfined yield stress comes 
from drawing a Mohr circle again tangential to the yield locus, but 
with the minor principal plane stress going through the origin (i.e. 
unconfined with zero stress acting).  

However, the Coulomb solid formed by the powder compact will 
have properties that depend upon how it has been treated. The 
greater the original consolidating load, the larger will be the yield 
locus. Hence, a series of yield loci will exist for a given powder, 
dependent upon the consolidation conditions used to form the 
compact. This series of yield loci can be used to provide a relation 
between the strength of the powder to resist breakage and the 
consolidating conditions used to form the compact; this is the 
material, or powder, flow function.  

In a Coulomb solid there is a limit to the range of stresses that will 
cause no permanent deformation. A stress equal to the limit causes 
plastic flow, see Figure 10.14, where Cy is similar to a yield stress and 
is called the cohesion 

yθtan C+= στ  (10.22) 

Equation (10.22) provides the shear stress needed to cause failure of 
the specimen at a given normal force. A free flowing powder will 
have no cohesion, resulting in a line through the origin (Cy=0). For 
cohesive powders, a shear cell can be used to determine a yield locus 
where the powder is first consolidated to a given bulk density and 
state, then sheared under different values of consolidating load or 
normal stress. The tests can be repeated to provide several yield loci 
for the same powder, but under conditions of different initial 
consolidation, see Figure 10.15. 

The top point on each locus was obtained from a powder by 
applying a fixed consolidating load before and during the shear test. 
The same load was initially applied for all the other tests used, but 
lower values were used during the test; the powder retains the 
properties of the material formed during the pre-shear consolidation 
process. The highest pre-shear consolidation load was used for YL3, 
and YL1 had the lowest The powder porosity should decrease with 
increasing consolidating load so YL3 represents the strongest and 
least porous powder compact. 

Fig. 10.13 Mohr’s circle 
with yield locus – when a 
circle touches the yield 
locus failure occurs 

Fig. 10.14 Cohesion and 
friction in a Coulomb solid 

Fig. 10.15 Yield loci for 

powder compact 

Fig. 10.16 Effective angle 

of internal friction 
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The effective angle of internal friction is given by the angle of a line 
going through the origin that is tangential to the Mohr's circle drawn 
at the end of the yield locus, see Figure 10.16, and compare with 
Figure 10.14. 

Consideration of the Mohr's circle, provides two key elements that 
are used in the characterisation of powders and hopper design: the 

unconfined yield stress (fc) and the maximum principal stress (σx). The 
unconfined yield stress is the maximum stress on a powder plane 
where the other principal plane is under conditions of zero shear and 
zero consolidation. This is the condition at the open side of a stable 
arch, - see Figure 10.9. So, in order to break a stable arch - or to stop 
one forming, we need to ensure that conditions within the hopper are 
such that the state of stress is greater than the unconfined yield stress, 
as given by the Mohr's circle going through the origin and tangential 
to the yield locus. The physical state of the powder is given by the 
consolidation conditions; treating the powder as a Coulomb solid the 
powder strength will be greater when the consolidation forming the 
compact is greater. The powder has been formed by the conditions of 

shear stress and consolidation given by τa and σa respectively. 
However, under the Mohr's circle development, we may represent 

this state of stress as a single (maximum) principal plane stress σx. 
Perhaps the best way of considering these parameters is to think of a 

maximum consolidating stress (σx) that will give rise to a single value 
of the unconfined yield stress (fc). The greater the consolidation then 
the stronger the powder: hence the larger the value of fc and the 
hopper will have to be designed to provide a greater arch breaking 
condition: e.g. steeper angle from the horizontal or larger opening. 
These terms are illustrated in Figure 10.17. 

This relation between the unconfined yield stress and the 
maximum consolidation stress is often a single repeatable function 
that characterises how the powder compact behaves; it is known as 
the Powder Flow Function (PFF), or Material Flow Function (MFF). For 
cohesive powders, it is a more useful and reliable form of powder 
characterisation than angle of repose, etc. 

The PFF is obtained by the following methodology. A single yield 
locus is used to provide the Mohr's circle that can be fitted to the 
stress condition at the end of that locus: i.e. a circle is drawn through 
the top point of the locus such that it is tangential to the locus. The 
maximum consolidating principal stress is read off where the Mohr's 
circle cuts the normal stress axis. The unconfined yield stress comes 
from another Mohr's circle plotted near the origin: the minimum 
normal stress has to be at the origin and the circle must again be 
tangential to the yield locus, see Figure 10.17. The unconfined yield 
stress is read off where this Mohr's circle cuts the normal stress axis. 
The two values are plotted as a single data point on the illustrated 
PFF (or MFF) graph. This procedure provides one data point for the 
PFF, so other yield loci must be obtained (under different 
consolidation conditions) to provide sufficient data to draw the full 

Fig. 10.17 Construction for the

required data for the PFF 

Fig. 10.18 The Powder Flow 

Function 
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curve. The origin on the unconfined yield stress and maximum 
consolidation stress figure provides an additional data point. An 
illustrative PFF is shown in Figure 10.18. 

For the powder we now know: the PFF and the effective angle of 
internal friction, from Figure 10.16, which tells us something about 
how stress will be transmitted within the powder. Thus, we have 
characterised our powder and must consider the state of stress in the 
powder caused by the hopper design and see whether it will be 
sufficient to overcome the formation of a stable arch. 

10.5 The hopper flow factor and hopper design 

To determine the Hopper Flow Factor (HFF) the following procedure is 
used: the appropriate Jenike design chart is identified using the 
effective angle of internal friction. The angle of wall friction is 
obtained from tests described later and the hopper slope from the 
vertical is either measured, for an existing hopper, or selected for a 
new design. The value selected is based on the knowledge that the 
design chart, an example is illustrated in Figure 10.19, is split into two 
regions. The bottom left region is for a mass flow hopper and the top 
right will result in a core flow hopper. Thus, a value of the hopper 
slope from the vertical that rests on the dividing line between these 
regions is bordering on a mass flow design. For the sake of safety, 
assuming that a mass flow design is required, it is usual to come 3 
degrees back towards the vertical and into the mass flow regime from 
this line. On the design chart, the hopper ratio between compacting 
stress and applied shear stress (ff) is estimated, and the HFF is plotted 
on the same graph as the PFF, as a line with gradient of 1/ff, Figure 
10.20. 

To test for a stable arch in the hopper the following logic is 
applied. Where the PFF lies above the HFF the powder has greater 
strength to resist shear and collapse than the hopper/powder system 
can provide. A stable arch is, therefore, possible. When the HFF is 
above the PFF the system has sufficient stress to break an arch and 
reliable flow should exist. The point at which the PFF and MFF meet 
gives the critical unconfined yield stress (fc -critical) and this can be used to 
determine the minimum hopper opening, from equation (10.13) 
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where H(θ) is a constant dependent upon the geometry of the hopper 

opening. The factor H(θ) arose in the derivation of the stable arch 
where the arch was assumed to act over a linear distance L, which 
acts up to the centre of the hopper. The arch forms above the opening 
but the linear dimension measured, or deduced, is the hopper 
opening itself. This is not the same as L, or even 2 L, but bears some 
relation to it. Jenike provided another chart, Figure 10.21, for this 
relation, dependent upon the opening geometry and the hopper slope 
from the vertical. 

Fig. 10.19 Jenike design chart for

a powder with an effective 

angle of internal friction of 50o 

Fig. 10.20 Test for flow by 

comparing the PFF and the HFF 

Fig. 10.21 H(θ) for types of 

hopper opening where L is 

one rectangular dimension 

and B the other: if L<3B use 

the square curve 
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10.6 Measurement techniques and conditions 

The simplest way to determine the unconfined yield stress is from a 
Uniaxial Compression test, see Figure 10.22. Firstly, the powder is 
compacted whilst constrained by the application of a normal 
consolidating load. The constraints are then removed and another 
compressive load applied. The value of this load at the point of 
failure is the unconfined yield stress; i.e no side-walls and no shear 
stress; solely a consolidating stress applicable at the point of failure. It 
is fairly easy to relate this state of affairs to that of breaking an arch 
inside a hopper. However, the uniaxial compression test is not a 
reliable method. The most common method employed is the Jenike 
shear cell. 

During the Jenike test, Figure 10.23, two rings are employed 
(upper and lower). The powder fills the rings and has a consolidating 
load applied. This load is removed and a lower load applied, together 
with a shear stress via the bracket on the side of the top ring. When 
the shear stress is sufficient the top ring will slide over the bottom, 
and the powder has sheared. This gives one value for shear and 
consolidating stress, which may be plotted on a yield locus. A 
measurement of wall friction can be achieved simply using the top 
ring from the Jenike shear cell: a given normal force is applied and 
the shear force required to slide the ring over the solid surface can be 
measured. A series of experiments at different normal forces gives 
rise to a graph from which the angle of friction can be deduced. 

Using a load cell connected to a chart recorder the trace (i.e. shear 
load) should increase steadily until the powder yields. This will be 
the proper consolidation curve, or plot, illustrated in Figure 10.24. 
However, if the powder only forms a loose aggregate the trace will 
follow the under consolidated curve. Conversely, if the powder is so 
tightly consolidated that dilitancy needs to be overcome (i.e. the 
powder must expand before it can shear) then the over consolidated 
curve will be followed. Only the test result from the proper 
consolidation should be used. 

An alternative to the Jenike cell is the Ring Shear Tester, Figure 
10.25. Again a normal force is applied together with a shear or 
rotational stress, see Powder Handling and Processing, Vol 8, No. 3, 
1996, pp 221 - 226, or http://members.aol.SchulzeDie/grdle1.html 
for further details. 

If the powder is left for some length in time, then the compact 
usually becomes stronger due to time consolidation. Hence, a new 
yield loci, and powder flow function (usually stronger), will be 
formed. The strength of a powder is also greratly influenced by the 
prevailing humidity. Hence, it is important to conduct the tests under 
controlled humidity conditions that will be similar to that used for 
powder storage. 

A triaxial test cell, consisting of a rubber sleeve around a cylinder 
of powder with side stress applied together with compressing stress 
at the ends, can be used to investigate compact failure. The 

Fig. 10.22 Uniaxial compression 

test 

Fig 10.23 Jenike shear cell 

Fig. 10.25 Ring shear cell 

Fig. 10.24 Test for correct 

consolidation 
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continuum approach in three dimensions is illustrated in Figure 
10.26, showing an element, or cube, of material with the 
corresponding stress tensor 

 
 

    
 (10.24) 
 
 

However, consideration of only three mutually perpendicular 
principal planes (no shear forces acting) results in the simpler matrix 
shown in Figure 10.26, which can be drawn as a tetrehedron, or 
pyramid, with three principal planes (x,y,z) that represent the 
resolved forces from a plane joining the three principal planes. The 
corresponding three dimensional Mohr's circle, represented on two 
dimensional paper, can be drawn as three circles and is shown in 
Figure 10.27. 

In order to maintain stable discharge from a hopper many bin 
inserts have been marketted. The formation of a stable arch may be 
disrupted by surfaces placed close to where an arch is most likely to 
form. See Lyn Bates, The Chemical Engineer, 14 November 1996 and 
numerous articles at: www.powderandbulk.com/. Consideration of 
the fastener arrangement, and discharge system, within the hopper is 
also important. Some examples of these are shown in Figure 10.28. 

10.7 Summary 

The hopper design procedure is summarised as follows: when 
considering a powder for the first time a series of yield loci can be 
obtained by laboratory measurements and the Powder Flow Function 
(PFF) deduced. The effective internal angle of friction is also obtained 
and the appropriate Jenike design chart identified. Tests also give the 
wall friction. For mass flow conditions (no arch and uniform flow), 
the operating region should be in the bottom left section of the Jenike 
design chart. For the sake of safety, it is usual to come three degrees 
back into the mass flow regime, i.e. reduce the hopper angle from the 
vertical axis. This is, therefore, the hopper half angle. The hopper 
flow factor is also deduced from this chart. A plot of the hopper flow 
factor and PFF can be used to deduce the critical unconfined yield 
stress and, therefore, the minimum hopper opening from equation 
(10.23). Hence, the hopper is now specified in terms of angle and 
opening diameter; storage capacity per silo can be deduced from the 
geometry and the maximum discharge rate can be estimated from the 
empirical equation (10.2), but this neglects coherency and should only 
be used as a rough estimate. 

The powder flow function is useful for hopper design, but is also a 
property of the powder and can be used as a characterisation 
technique in itself. For example, it may be used to correlate some 
behaviour within a process, or from a product, with the PFF. 
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Fig. 10.26 Three dimensional 

consideration of stresses with 

principal plane matrix below 

Fig. 10.27 Three dimensional 

representation on Mohr’s circles 

Fig. 10.28 Hopper fastener 

and discharge arrangements 

to avoid arch formation 
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However, changes with the PFF dependent upon humidity and time 
should be considered. 

Apart from powder storage in silos, other common powder 
containers include an Intermediate Bulk Container (IBC), which is a 
large sack that can hold over 1 tonne of powder. For transportation of 
amounts in excess of  IBC values trucks and wagons are needed.   

10.8 Problems 

Explain and answer the following terms: 
Dilatancy  Segregation  Shear stress 
Critical Porosity  Normal stress   Principal stress 
angle of internal friction  angle of wall friction 
effective yield locus  powder flow function 
hopper flow factor  unconfined yield stress 
 

1. Mohr circle (why is the centre always on the τ=0 line)? 

2. Given any value of τ and σ on a Mohr circle, at what angle to a 
principal plane will failure occur? 

3. Give physical meaning to the points at the opposite end on a 

Mohr's circle lying on the axis τ=0. 
4. How does increasing the state of stress influence the Mohr circle? 
5. What is the yield locus and why is it a locus? 
6. Sketch the yield locus of a free flowing powder and a cohesive 

powder - is the latter a meaningful question? 
7. Why is the maximum consolidation stress important? 
8. Please explain the condition required for a stable arch. 
9. A, B and C are badly drawn Mohr circles, together with three 

data points from a yield locus. Explain what is happening as the 
state of stress goes from A, through B and on to C. Do they all 
really exist? 

 
10. A Jenike shear test on a powder resulted in the following data: 
 

 Normal 
stress 
Pa 

Shear 
stress 
Pa 

Normal 
stress 
Pa 

Shear 
stress 
Pa 

Normal 
stress 
Pa 

Shear 
stress 
Pa 

Maximum normal 
load 

2200 1340 1600 1000 1200 740 

At subsequent 
loads 

1600 
1000 
400 

1250 
1100 
900 

1000 
700 
400 

920 
840 
700 

900 
600 
400 

740 
640 
560 

 
Derive the powder flow function for the powder. If the material is 
hygroscopic, outline a series of tests to check on the importance of 
changes in humidity on the hopper design. 
 

See: 

www.jenike.com 

for more information on 

hopper design 
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11. Draw a diagram representing the variation of solids stress inside a 
silo, and explain its shape. Contrast the solids stress with the 
variation of hydrostatic liquid pressure. 

  
The following results were obtained using a Jenike shear cell with 
time consolidation of 0, 7 and 14 days. Obtain the theoretical 

minimum opening for a cylindrical silo of hopper half angle 30o, H(θ) 
of 2.2 and angle of wall friction of 15o. Use a powder bulk density of 

1800 kg m−3.  
 

0 Days 7 Days 14 Days 

fc kN m
−2 σx kN m

−2 fc kN m
−2 σx kN m

−2 fc kN m
−2 σx kN m

−2 

2.6 3.0 5.5 7.0 9.0 10.0 

3.1 5.5 5.7 9.0 9.2 12.0 

3.4 8.0 5.9 12.0 9.3 14.0 

 
The actual hopper opening is 1 m in diameter; determine the time 
that the powder can be left in the hopper without arching. If this time 
is too short what steps can be used to ensure that the material still 
flows reliably? 
 
12. Intermittent flow is experienced from a cylindrical silo with a 
conical hopper that is several years old. The design criteria have been 
checked by remeasuring the powder properties and wall friction. The 
powder properties were found to be unchanged but it was 
discovered that the hopper wall had become badly scored. Using the 
following data and Figures 10.19 and 10.21 determine what minimum 
diameter opening is now required. What solution would you offer to 
ensure that the problem will not recur?  
Powder characteristics: 
 

Bulk density: 1800 kg m−3 
Unconfined yield stress kPa 8.5 5.8 3.0 

Maximum consolidation stress kPa 16.0 10.0 3.5 

 
Wall friction results 
In 1998 Normal stress kPa 8.00 4.00 2.00 

In 1998 Shear stress kPa 1.41 0.71 0.35 

In 2002 Normal stress kPa 8.00 4.00 2.00 

In 2002 Shear stress kPa 3.23 1.62 0.81 

Hopper half angle is 15o. 


