Contents

1	Introduction	
	1.1 Prerequisites and objectives	2
	1.2 The micron	2
	1.3 Sampling	2
2	Particle characterisation	5
	2.1 Particle size functions	7
	2.2 Algebraic representation of size functions	9
	2.3 Specific surface area per unit volume	12
	2.4 Distributions: moments and conversions	13
	2.5 Means of a distribution	15
	2.6 Image analysis and particle shape	15
	2.7 Example interpretation of distribution data	16
	2.8 Summary	17
	2.9 Problems	17
3	Fluid flow through porous media	21
	3.1 Definitions	21
	3.2 Flow regimes	22
	3.3 Darcy's law and Kozeny-Carman	23
	3.4 Friction factor	24
	3.5 Carman and Ergun correlations	25
	3.6 Concentrations by mass and volume	26
	3.7 Summary	26
	3.8 Problems	27
4	Filtration of liquids	29
	4.1 Deep bed and clarifying filtration	29
	4.2 Cake filtration	31
	4.3 Specific resistance and dry cake mass	
	per unit volume filtrate	32
	4.4 Compressible cake filtration	33
	4.5 Filtration modes of operation	35
	4.6 Membrane filtration	38
	4.7 Filter media	40
	4.8 Filter aids	42
	4.9 Summary	42
	4.10 Problems	43
5	Dilute systems	45
	5.1 Weight, drag and Particle Reynolds number	45
	5.2 Other forces on particles	48
	5.3 Particle acceleration in streamline flow	49
	5.4 Settling basin design (Camp-Hazen)	50

	5.5	Laboratory tests	51
	5.6	Summary	52
	5.7	Problems	52
6	Hin	dered systems and rheology	55
	6.1	Hindered settling and zone theory	55
	6.2	Batch settling flux	57
	6.3	Thickener design	58
	6.4	Kynch analysis	60
	6.5	Compressible sediments	60
	6.6	Homogeneous systems	61
	6.7	non-Newtonian rheology	62
	6.8	Summary	63
	6.9	Problems	63
7	Flui	disation	67
	7.1	Minimum fluidising velocity	68
	7.2	Types of fluidisation	69
	7.3	Bed design and bubbling behaviour	70
	7.4	Gas flow patterns around bubble and stability	70
	7.5	Davidson and Harrison model	71
	7.6	Discrete element analysis	73
	7.7	Summary	74
	7.8	Problems	75
8	Cen	trifugal separation	77
	8.1	Sedimenting centrifuges	78
	8.2	Hydrocyclones	80
	8.3	Filtering centrifuges	83
	8.4	Washing and dewatering	85
	8.5	Summary	88
	8.6	Problems	88
9	Cor	iveying	91
	9.1	Heterogeneous flow in liquids	91
	9.2	Dilute phase pneumatic conveying	92
	9.3	Dense phase pneumatic conveying	94
	9.4	Other conveying equipment	94
	9.5	Summary	96
	9.6	Problems	96
10	Ром	vder flow and storage	99
	10.1	Powder properties	99
	10.2	Flow patterns and stress in a hopper and silo	101
	10.3	Hopper opening and angle	102
	10.4	The powder flow function	103
	10.5	The hopper flow factor and hopper design	108
	10.6	Measurement techniques and conditions	109

10.7 Summary	110
10.8 Problems	111
11 Crushing and classification	113
11 1 Energy utilisation	113
11.1 Energy utilisation 11.2 Crushing laws	115
11.3 Breakage and selection functions	116
11.4 Milling circuit matrix	117
11.5 Population balances	119
11.6 Summary	120
11.7 Problems	121
12 Solid/solid mixing	123
12 1 Binary component mixing	120
12.2 Specification and confidence	127
12.3 Equipment	128
12.4 Cohesive powder mixing	129
12.5 Summary	129
12.6 Problems	130
13 Colloids and agglomeration	131
13.1 Forces on small particles – in liquid medium	131
13.2 DLVO and applications	133
13.3 Coagulation	135
13.4 Flocculation	136
13.5 Forces on particles – gaseous medium	137
13.6 Agglomeration and granulation equipment	139
13.7 Summary	140
13.8 Problems	140
14 Gas cleaning	141
14.1 Target; grade and overall efficiencies	141
14.2 Collection mechanism	142
14.3 Dust collection material balance	145
14.4 Equipment types	146
14.5 Summary	148
14.6 Problems	149
15 Powder hazards	155
15.1 Explosion hazards	155
15.2 Physiological hazards	156
15.3 Summary	158
16 Case study	159
Nomenclature	164
Further reading	166
Appendix - Heywood Tables	168
Index	170