
6  Hindered systems and rheology 
 
On increasing the particle concentration from the low values 
considered in the previous chapter, the system properties will change 
considerably from those of the continuous phase, usually water, and 
the individual particles. In settling, the presence of a large number of 
fine particles will hinder the fall of the larger particles and the very 
small particles will be dragged down more quickly than under free 
settling. There is an important question to be considered in our 
treatment of high concentration suspensions: are we interested in the 
behaviour of the particles compared to the continuous phase, such as 
during hindered settling, or the behaviour of the suspension as a new 
homogeneous phase, such as during pumping of a mixture? The 
latter is the concern of buoyancy, viscosity and rheology and is 
considered in the later sections. Initially, the settling of particles 
within a continuous phase will be considered. Another fundamental 
concern is the particle concentration at which hindered systems are 
appropriate, rather than the models discussed in the previous 
chapter. In general, hindered settling is appropriate when the particle 
concentration is greater than about 1% by mass. To describe 
concentrated suspensions we will need to use some of the definitions 
from Chapter 3. An illustration of porosity and solid concentration by 
volume fraction is reprinted in Figure 6.1. 

The industrial equipment in which hindered settling is conducted 
is simply tanks, which may be operated batch-wise or continuously. 
Settling is a cheap method of concentrating solids, the driving 
potential for it is free (gravity), but it provides only a limited final 
solid concentration and the process is slow. However, it is very often 
used in thickening a suspension before a more capital intensive 
operation, such as filtration. The design of industrial thickeners is 
covered in Section 6.3. 

6.1 Hindered settling and zone theory 

One method to ascertain if a suspension is settling in the hindered 
settling regime is to mix the suspension thoroughly and to watch it 
settle in a laboratory measuring cylinder. If an interface between the 
settling suspension and clearer residual liquid is apparent, then the 
settling is within the hindered settling regime. It may be possible to 
observe the rate of descent of the interface with time, as illustrated in 
Figure 6.2. Below the settling interface exists a porous medium, 
similar to that illustrated in Figure 6.1. If it were possible to turn the 
measuring cylinder upside-down, without everything falling out, 
then the liquid velocity upwards, required to keep the settling 
interface stationary, would be the same as the superficial velocity 
illustrated in Figure 6.1. Hence, the settling velocity is the same as the 
superficial velocity and we can justifiably use the symbol Uo for both. 

Fig. 6.1 Illustration of 
porous medium – 
including settling 
suspension 

Fig. 6.2 Hindered settling in
cylinders – interface fall 
with time 
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The technical term for the residual liquid above the interface is the 
supernatant and, for the duration of this chapter, it will be assumed 
that it is entirely free of solids. It will also be assumed that there are 
no wall support effects for the settling suspension, a vessel of 
diameter equal to, or greater than, 150 mm is often recommended for 
this purpose, but tests in different diameter vessels can show if this 
effect is important. 

The hindered settling velocity is a strong function of the particle 
concentration and, for a given material, nothing else; i.e. it is 
independent of vessel diameter, shape, etc. The dependency on 
concentration is logical: at the highest possible concentration no 
settling can take place, at low concentration the particle will settle 
under free settling conditions. Thus, in hindered settling the settling 
velocity will be between these two limits and a mathematical 
expression for hindered settling velocity could be considered to be a 
correction term to the free settling velocity (Ut). The most famous 
empirical relation between settling velocity (Uo) and solid 
concentration by volume fraction (C) is the Richardson and Zaki 
equation 

n
CUU )1(to −=        (6.1) 

where n is a variable constant that depends on the Particle Reynolds 
number and may be dependent on vessel diameter (d): 
 
Particle Reynolds number n for small tubes n for large tubes 

< 0.2 4.65 + 19.5 x/d 4.65 

0.2 < Re’ <1 (4.35 + 17.5 x/d) Re’
−0.03 4.35 Re’

−0.03 

1 < Re’ < 200 (4.45 + 18 x/d) Re’
−0.1 4.45 Re’−0.1 

200 < Re’ < 500 4.45 Re’
−0.1 4.45 Re’−0.1 

Re’ > 500 2.39 2.39 

 
In Figure 6.3 all the settling interface plots are straight lines, followed 
by curves. This can be explained by considering what takes place 
within the settling suspension. At the start, the concentration is Cf and 

uniformly distributed within the vessel. At a time δt the concentration 

at the base of the vessel is Cf +δC. At the next instance in time, 2δt, the 

concentration at the base is Cf+2δC. If we were to track the 

concentration Cf+δC we would find that it is now slightly higher up 
the vessel than the base. Thus layers of constant concentration appear 
to propagate upwards. Of course, all the solids are settling; no solids 
are propagating upwards – we are merely looking for a region of a 
given concentration of solids. It takes some time before the solid 
concentration below the settling interface increases from that of the 
original and, according to equation (6.1), settling velocity is a unique 
function of concentration; hence, the settling velocity must remain 
constant, giving rise to the initial straight lines in Figure 6.3. The 
concentration increases from the base are illustrated in Figure 6.4. 

Fig. 6.3 Variation of 
settling velocity with 
starting concentration 

Fig. 6.4 Solid concentration 
increases starting at the base 
and apparently rising 
upwards in the vessel 
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In our settling suspension we can see that there are zones, or regions, 
of: supernatant liquid, the original concentration (just below the 
settling interface) and it is logical that there will be another zone 
consisting of fully settled sediment at the base of the vessel. There is a 
fourth zone: that of variable (increasing) concentration lying between 
the sediment and initial concentration zones. This is illustrated on 
Figure 6.5 and the mathematical description of the concentrations in 
this zone was first published by Kynch in the 1951, and is covered in 
Section 6.4. At this stage, it is reasonable to suggest that because the 
settling velocity is a unique function of concentration the velocity at 
which the concentrations propagate upwards will be also, giving rise 
to lines emanating from the origin called concentration characteristics.  

6.2 Batch settling flux 

When a characteristic reaches the settling interface the concentration 
at the interface will become the value of the characteristic and, in 
accordance with equation (6.1), the settling velocity will become the 
value given by that concentration. This leads to an increasing 
concentration at the interface, after the end of the constant settling 
rate period, hence the settling rate decreases with time. 

The height of interface against time plot, as illustrated in Figure 
6.3, is very simple to obtain from experimental data and is very 
powerful in the information that can be deduced from it. Design 
information is concerned with the ability to pass a required mass of 

solids per unit area and time; i.e. kg m−2 s−1, or mass of solids per unit 

time kg s−1, this is the solids flux. Mathematically, the solids flux 

(kg s−1) due to settling in a batch vessel is 

so ρCAUG =        (6.2) 

However, in most cases the vessel area and the solids density are 
constant; hence, the solids flux is usually abbreviated to (G’) 

CUG o'=        (6.3) 

which has the units m s−1. A batch flux curve, Figure 6.6, can be 
plotted by conducting several sedimentations at different 
concentrations and measuring the initial settling velocities at the 
concentrations used, as illustrated in Figure 6.3. The batch flux curve 
possesses a maximum and this can be explained by consideration of 
the two limits: at zero concentration the flux must be zero, in 
accordance with equation (6.3), and at the highest possible 
concentration the flux will again be zero because the settling velocity 
term will be zero. Between these two extremes the flux will have 
finite values; hence, the batch flux curve must possess a maximum, as 
illustrated in Figure 6.6.  

The knowledge that concentration characteristics reach the settling 
interface, and then the interface settles at the velocity for that 
concentration, can be used to determine the settling velocities for 

Fig. 6.5 Zones within a settling 
suspension at a selected time t 

Fig. 6.6 The batch flux curve 

Fig. 6.7 Construction to 
transform a settling curve
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concentrations greater than that used in the original suspension. The 
justification comes from a material balance as no solids are lost 

s11sof
ρρ AHCAHC =       (6.4) 

where Ho represents the full height of the suspension before settling 
commences. Thus it is possible to mix the suspension and obtain a 
settling velocity at concentration Cf; then after some time to remove 
some supernatant liquid and fully mix the suspension again and let it 
settle. This will give a slower settling velocity and the solid 
concentration of the fully mixed suspension can be deduced from 
equation (6.4) by rearrangement to obtain the new initial 
concentration 
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o=        (6.5) 

Clearly, it is physically possible to perform the experiment to obtain 
the settling rate at the new concentration, but it is also possible to 
perform the transformation of the data graphically, without the need 
of the experiment, as the two settling curves are identical after the 
point at which the concentration characteristic reaches the interface. 
This is illustrated in Figure 6.7. 

6.3 Thickener design 

A continuous thickener is a vessel with a feed, at low solid 
concentration, and two output streams: an overflow of clean liquid 
and an underflow suspension of much greater concentration than the 
feed. The vessel is normally circular, with a conical bottom that is 
raked to bring the solids into the discharge well. The design 
requirement is to deduce the plan area required for a given flow rate 
of solids entering and to achieve the desired degree of thickening. If 
insufficient area is provided then the concentration of solids within 
the vessel increases and will eventually leave in the overflow. The 
fluxes within a thickener include the batch flux, described above, but 
there is an additional flux due to the continual removal of material 
from the base; i.e. underflow. The fluxes are illustrated in Figure 6.8, 
which includes a schematic diagram of the thickener. 

The thickener feed flux is illustrated in Figure 6.9 and this is the 
mass feed rate entering the system. Equating all the flux terms 

provides, where F is the thickener feed rate (m3 s−1) 

sfso
)( ρρ FCCTUAG =+=  

i.e. the feed flux must be equal to the batch and underflow 
withdrawal flux within the thickener, thus 

CTU

FC
A

)( o

f

+
=        (6.6) 

The flux at an arbitrary height within the thickener will be equal to 
the flux at the underflow (TCu), which can be substituted into 
equation (6.6) 

Fig. 6.8 Fluxes in a thickener 

Fig. 6.9 Flux (kg s−1 of solids) 
fed to the thickener 
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but the batch flux at the underflow will be negligible compared to the 
underflow withdrawal flux; hence we can write 

u

f

TC

FC
A =        (6.8) 

Equation (6.8) is the design equation and to use it we must determine 
the flux at the underflow concentration. 

The underflow withdrawal induces a downward velocity within 
the thickener which is constant for all the concentrations present from 
Cf to Cu. Hence, the underflow withdrawal flux is a straight line on a 
graph of flux against concentration, see Figure 6.10. Adding the batch 
and underflow withdrawal flux together gives the composite flux 
curve; which has a minimum at a critical concentration between Cf and 
Cu. It is this concentration that has the minimum solids flux, or 
handling, ability. Hence, if too much solids are added to the thickener 
the critical concentration (Cc) will build up within the device and 
eventually overflow. The batch, underflow and composite flux curves 
are illustrated in Figure 6.11. 

In Figure 6.12 the construction required to determine TCu, for use 
in equation (6.8), is illustrated. The minimum composite flux occurs 
at Cc and is numerically equal to the underflow flux at Cu; i.e. TCu. 
However, the composite flux at the critical concentration does have 
two components: that due to batch settling and underflow 
withdrawal, which are marked on the figure. Clearly, it is possible for 
the thickener to be operated under conditions that require a batch 
flux less than the value at the batch flux curve, at Cc, but batch fluxes 
greater are not possible. Hence, the limit of operation is where Cc 
meets the batch flux curve. So, for a required underflow 
concentration (Cu) a line drawn through the concentration axis at Cu 
and tangential to the batch flux curve will meet the flux curve at the 
value of TCu. This value can then be used in equation (6.8) to 
determine the thickener area. 

Thickener height is not determined by flux theory and, in general, 
thickeners are short vessels with diameters up to 50 metres. 
Minimum heights are allocated for the raked zone (0.5 m), solids 
storage zone (0.5 m) and clarification (0.5 m). Thus, a thickener is 
usually 1.5 to 4 m in height, unless solids compression is important. 

An alternative design method to the use of the batch flux curve 
construction described above was originally described by Coe and 
Clevenger. A flux balance between the feed and underflow provides 

sfsu
ρρ FCATCG ==  hence  

u

f
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which can be substituted in to equation (6.7) and rearranged to give 

 

Fig. 6.10 Underflow 
withdrawal flux 

Fig. 6.11 All the flux 
curves 

Fig. 6.12 Construction to 
determine the critical flux – 
equation (6.8) 
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Equation (6.9) is solved by selecting concentrations between Cf and 
Cu, where Uo is required for the value of C selected, and using the 
greatest area for the design. Equation (6.9) is easier to apply than the 
graphical technique described earlier, but equation (6.8) and the 
graphical construction has the advantage that it can be used to 
predict the underflow concentration from an existing thickener under 
different operating loads; i.e. FCf. 

6.4 Kynch analysis 

Figure 6.13 includes a slice through a settling suspension and 
illustrates a batch settling curve. A mass balance on the solid slice 

gives, in terms of kg s−1 of solids: 
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where z is the vertical co-ordinate in the batch settling vessel. Using 
input - output gives accumulation, taking to an infinitesimal distance, 
cancelling and rearranging gives 
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i.e. the rate of increase in height (dz/dt) of a concentration C is the 
differential of the product of the concentration and the settling 
velocity, which could be calculated from equation (6.1). Equation 
(6.10) shows that the propagation velocity will be a unique function 
of solid concentration, a consequence of the settling velocity, equation 
(6.1), being a unique function. Thus, equation (6.10) shows 
mathematically that the propagation velocity for a given 
concentration will be a constant; hence, the straight lines from the 
origin to the point where they meet the settling interface curve. 
Equations (6.10) and (6.3) show that the propagation rate of a 
concentration characteristic can be obtained from the tangent, or 
differential, to the batch flux curve drawn at that concentration value. 

6.5 Compressible sediments 

The various types of settling are illustrated in Figure 6.14. It is called 
Fitch's paragenesis diagram. Clarification was described in Chapter 5 
and the earlier part of this chapter discussed zone settling, which 
occurs when each particle behaves in an incompressible manner and 
is free to move within the suspension, subject to undergoing 
hindered settling. Flocculent sedimentation is when the particles are 
stuck together, either by a synthetic flocculent or by natural 

Fig. 6.13 A lamina layer 
within a settling suspension 
and the batch settling curve 

Recommendation 
Leave Sections 6.4 
and 6.5 until after 
completing the 
problems. 

Fig. 6.14 Diagram showing 
types of sedimentation 
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aggregation. This leads to compressible sediments. Compression 
during sedimentation is sometimes called self weight filtration, and the 
compressible equations (4.15) and (4.16) can be applied. During 
compression a solids stress gradient exists (dPs/dz), this gradient is not 
present in zone settling. A force balance, neglecting inertia, on a 
lamina settling layer gives (stress = solids weight – liquid drag) 

os
s )(

d

d
U
k

Cg
z

P µ
ρρ −−=  (6.11) 

where k is the permeability. For a more detailed discussion on this 
topic the interested reader is directed to more advanced texts – see  
the further reading section. 

6.6 Homogeneous systems 
The earlier sections considered particles sedimenting in a continuous 
phase, such as water. The remaining sections cover the treatment of 
homogeneous systems, where the particles do not separate from the 
continuous phase, but their existence leads to modification of the 
properties of the continuous phase such as buoyancy and viscosity. 
These considerations are, therefore, relevant to situations when the 
suspension needs to flow within a pipe, etc. 

The buoyancy force exerted by a fluid is the upthrust exhibited by 
the weight of the fluid displaced, see Archimedes’ principle on page 
45. However, if a large object is suspended in a stable suspension, 
then it will experience an upthrust due to the liquid and surrounding 
solids combined. The effective density of the surrounding continuous 
phase is average density of the fluid and solids combined 

ρρρ )1(sm CC −+=  (6.12) 

The buoyancy correction for a large object within a suspension is 

ms ρρ −  

Hence, it is possible to quickly measure the solid concentration of a 
suspension using a hydrometer to obtain the mixture density and 
equation (6.12) rearranged to give 

ρρ
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−
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mC  (6.13) 

However, equation (6.12) is only valid for objects that experience the 
surrounding suspension as a continuous phase and not just the fluid 
component of it; i.e. objects larger than the particles in suspension. 

The viscosity of a suspension depends upon the solid 
concentration and the nature of the solids. For suspensions exhibiting 
Newtonian flow behaviour a well-known correction for the presence 
of solids is Krieger’s equation 

'/'
e )'1( K
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−=  (6.14) 

where µe is the effective Newtonian viscosity, K’ is a crowding factor 
which is equal to 1/Cmax (which is 1.56 for spheres) and 'η  is the 

 

Fig. 6.15 Comparison of 
Newtonian viscosity 
equations correcting for solids
presence and experimental 
data 



62 Hindered systems and rheology 

intrinsic viscosity, which is 2.5 for spheres. A comparison of the 
Krieger equation and an alternative is illustrated in Figure 6.15, 
together with experimental data obtained with mono-sized latex 
spheres in water. 

When pumping suspensions, the pressure drop may be calculated 
using Newtonian flow equations, with equations (6.12) and (6.14) 
employed to correct for the presence of solids. However, this is only 
true for suspensions exhibiting Newtonian flow behaviour and most 
suspensions, at high concentration, exhibit non-Newtonian rheology. 

6.7 non-Newtonian rheology 

Figure 6.16 illustrates the common, time-independent, rheograms. 
For Newtonian flow the simple relation between shear stress (R) and 
rate is 

z

u
R

d

d
µ−=  (6.15) 

where µ is the coefficient of dynamic viscosity. Equation (6.15) is a 
single parameter model (i.e. just viscosity) to relate shear stress to 
rate. The next most complicated rheological model is a two parameter 
one 
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where K is the consistency coefficient, m is the flow index and u is the 
fluid, or suspension, velocity. Equation (6.16) is known as the power 
law model and it mathematically represents both pseudoplastic and 
dilitant flow on Figure 6.16; corresponding to m values less than, or 
greater than, unity respectively. 

Under laminar flow conditions it is possible to combine equation 
(6.16) with a force balance at a pipe wall  
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∆
=  (6.17) 

where a is the pipe radius, and derive an analytical equation for 
pressure drop with suspension velocity, or flow rate, in a similar way 
to the derivation of the Hagen-Poiseuille equation for Newtonian 
fluids. The resulting equation is 
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As with single phase systems, on increasing the velocity energy 
losses due to turbulence within the flowing suspension will become 
more significant. Much of the work on power law fluids was 
published by Dodge and Metzner in the 1950 and 60’s, and they 
derived the Generalised Reynolds number to distinguish between 
laminar and turbulent flow. The threshold for the onset of sufficient 
turbulence to invalidate the use of equation (6.18) is about 2000 and 
the Generalised Reynolds (Re*) number is 

Fig. 6.16 The common time
independent rheograms 

Fig. 6.17 Lamella separator 
or thickener – has lots of 
sedimentation channels in 
parallel 
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For Newtonian fluids, in the turbulent flow regime, the following 
equation correlates the friction factor and flow Reynolds number 
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The analogous correlation for power law fluids, and suspensions, is 
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where the friction factor is related to the wall shear stress by 

22 u
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ρ
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6.8 Summary 

If a continuous thickener is designed correctly sufficient area will be 
present to allow the solids to settle into the underflow, whilst 
supernatant liquid reports to the overflow. If the total solids flux is in 
excess of the design value, the thickener will have insufficient 
capacity for the throughput required. Suspension, at the critical 
concentration, will build up inside the thickener and eventually 
overflow. Above the hindered settling region there may be some free 
settling (clarification) or simply a region of clear liquid. Some special 
designs exist that enhance the throughput, such as the lamella 
separator illustrated in Figure 6.17, but the principles of hindered 
settling are similar to those described in the earlier sections – the 
designs provide an enhanced effective plan area for the separation. 

Equation (6.11) suggests that it is possible to use permeability, 
covered in Chapter 3, to deduce the settling rate (Uo) given that for 
incompressible (zone settling) the solids stress gradient will be zero. 
This is true, and it is possible to rearrange equation (6.11) for settling 
velocity and combine with equation (6.3), for flux, or equation (6.9) 
for plan area of a thickener. If the Kozeny-Carman model of 
permeability is used, however, it is usual to reduce the Kozeny 
constant from the usual value of 5 to 3.3, as this is believed to give a 
better fit to the data. However, there is a wealth of evidence to 
support this so-called constant being a function of solids 
concentration. 

6.9 Problems 

1.  
i). A 3% v/v suspension is to be settled in a batch settling tank prior 

to water reuse within a process. A sample of the suspension settled 
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with a clear interface when placed in a 1000 ml measuring cylinder. 
The batch settling curve was as follows, plot the data on the grid, or 
graph paper. 

 

Time 
(mins): 

0 20 40 60 80 100 120 140 160 200 240 280 

Height 
(cm): 

28 24.2 20.4 16.5 13.6 11.2 9.4 8.1 6.8 5.4 4.4 4.0 

 

ii). It is proposed to operate the settling tank on a three day cycle, in 

which 1000 m3 of suspension is run into the tank each day, allowed to 
settle and some of the liquid recycled back to the process. At the start 
of the third day 85% of the liquid from the first two days has been 
recycled. The total solid volume in the tank after addition of 

suspension on day 3 is (m3):....................... 

The total liquid volume in the tank is (m3):....................... 
the tank design is now based on what happens on day 3, on day 4 the 
sludge in the tank will be pumped out and the cycle started again. 
iii). It may be assumed that the action of adding suspension on day 3 
completely mixes the tank to give a uniform suspension leading to a 
tank solid concentration of (% by v/v): 
a:  6.7 b: 3.0 c:  9.0 d:  7.1 
iv). It is possible to write a mass balance relating the height (Hf) of a 
uniformly mixed suspension of one concentration (Cf) to the height 
(H1) and concentration (C1) of the same mass of solids but mixed to an 
alternative concentration, as follows: 

ssff AHCAHC ρρ 11=  

where A is vessel area and sρ  is the solid density. Thus, you have 

been given the settling data for a 3% v/v suspension above which 
needs to be converted into settling data at the concentration 
determined in Part (iii); the height (H1) required in the above 
equation is (cm): 
a:  28.0 b: 9.3 c:  12.6 d:  14.0 
v). Take a ruler and draw a line from the height determined in Part 
(iv) making a tangent to the settling curve plotted in Part (i). You 
have now obtained a settling curve for a uniform suspension of the 
concentration given in Part (iii). note that settling rate is independent of 
vessel diameter (but depends strongly on suspension concentration), 
hence the settling curve obtained in a 1000 ml measuring cylinder 
will be the same as that obtained in a large process vessel. 
vi). As settling rate is independent of vessel diameter one design is to 
construct a vessel of height given in Part (iv). The total vessel volume 
would need to be sufficient to accommodate the volumes given in 

Part (ii). This would make the vessel area (m2): 
a:  4825 b: 1070 c:  48250 d: 10700 

Rheology summary for Q.4 
A commonly used 
correlation between shear 

stress (R) and shear rate (γ) is 
the power law expression 

m
KR γ=  

where K is the consistency 
coefficient and m is the flow 
index.  For laminar flow the 
pressure drop is related to 
the flow rate via Wilkinson's 
equation 
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where Q is the volumetric 
flow rate and a is the pipe 
radius. The generalised 
Reynolds number (Re*) is 
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For turbulent flow the 
friction factor is 
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and, combining (6.17) & 
(6.22), 
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vii). At the end of the settlement period, i.e. on day 4 after pumping 
the supernatant but before pumping the sediment out, the volume of 

sediment is (m3): 
a:  90 b: 527 c:  437 d: 1351 
viii). Hence, given the vessel area from Part (vi), the height required 
for the sediment is (m): 
a:  0.049 b: 129 c:  0.129 d: 0.00013 
ix). Draw a line from the origin of your settling graph to meet the 
settling curve at the height given in Part (viii). This occurs at the time 
(minutes): 
a:  80 b: 160 c:  220 d: 280 
You have now completed one design for this settling vessel: the 
height comes from Part (iv), the area from Part (vi), and the time 
required to settle from Part (ix). 
x). Comment below on your design. 
xi). The line you have just drawn from the origin to the settling curve 
represents a solid characteristic at a concentration greater than that 
given in Part (iii). It can be used to provide another vessel design. 
Assuming that the maximum permissible time for settling is 24 hours, 
the height of this characteristic after 24 hours is (cm): 
a:  12.6 b:  28.0 c:  32.0 d:  56.0 
xii). Assuming that this height again represents the depth of sediment 
in the vessel, the new vessel area required to accommodate the total 

sediment on day 4 is (m2): 
a:  1650 b:  3290 c:  6590 d:  13200 
xiii). Under these conditions the new vessel height will be (m): 
a:  4.02 b:  2.17 c:  0.82 d:  0.28 
xiv). Explain below how other characteristics can be used to provide 
alternative designs: 
 
2.  
i). A continuous thickener is to be designed to deal with the effluent 

from the last question. It will treat the 1000 m3 per day of suspension 
fed at 3% v/v solids concentration and is to discharge underflow at 
13.8% v/v solids. Use the settling curve from question (1) and a mass 
balance to complete the following table. 
Concn (v/v) 0.03 0.039 0.045 0.049 0.056 0.067 0.074 0.092 

Height on axis (cm) 28 21.5       

Velocity (m s−1) 3.2x10-5        

Batch flux (m s−1) 9.5x10-7        

note batch flux is the product of settling velocity and solid concentration 
 
ii). Plot the batch flux curve on the grid provided, or on graph paper. 
iii). Now a flux balance on a thickener provides the following result: 

 ufu )( YCFCTCA ==  

where A is the thickener area, (TCu) is the critical thickener flux which 
is the intercept of a line drawn as a tangent to the batch flux curve 
and going through the desired underflow concentration, F and Y are 

Mass balance, where Cf 
is any concentration in a 
batch settling vessel and 
Hf is the corresponding 
height: 

s11sff ρρ AHCAHC =  
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the volume feed and underflow rates respectively, Cf and Cu are the 
volume fraction feed and underflow concentrations respectively. 
Note that T is, in effect, the velocity of solid movement in the 
thickener caused by underflow withdrawal at the solid concentration 
Cu. The critical flux in this thickener giving an underflow discharge 

concentration of 13.8% v/v solids is (m s−1): 

a: 10x10−7 b: 8.5x10−7 c: 7.2x10−7 d:  5.8x10−7 

iv). The minimum thickener area for this duty is (m2): 
a:  480 b: 29000 c: 16000 d: 960 
v). If the thickener is circular in cross-section the minimum thickener 
diameter is (m): 
a:  25 b: 190 c:  140 d: 35 

vi). The underflow rate is (m2 hour−1): 
a:  1.25 b: 2.4 c: 4.6 d: 9.1 

vii). The overflow rate is (m3 hour−1): 
a:  40.4 b: 39.3 c: 37.1 d: 32.6 
 
3. An existing 5 m diameter thickener is to be used to thicken 2400 
tonnes per 24 hours of flocculated slurry containing 10% solids by 

mass (0.037 v/v) in water. The solid density is 2900 kg m3. The 
following batch sedimentation results were obtained in a test: 
Time (mins): 0 2 4 6 8 10 12 20 30 

Interface height 
(cm): 

45.6 36.5 28.0 21.6 16.8 14.5 13.2 10.6 9.7 

What will be the underflow concentration? (Ans 19% by mass) 
 
4. 
i). Rheological tests on milk of magnesia have provided the following 
data. Calculate the consistency coefficient and the flow index. 
 

shear rate (s−1): 7.2 16 64 320 720 

shear stress (Pa): 7.0 9.1 14.3 24.2 31.6 

 
ii).  The suspension must be pumped 2.11 m down a pipe of radius 

6.95 mm.  Mean suspension density is 1300 kg m−3.  Complete the 
table and sketch the graph of pressure drop against flow rate. How 
does it differ from what is expected of a Newtonian suspension? 
 

For Laminar flow: For Turbulent flow: 

Pressure 
drop 
(kPa) 

Flow rate 
 

(m3 s
−1) 

Velocity 
 

(m s
−1) 

Re* Velocity 
 

(m s
−1) 

Re* f -1/2 

equn(6.17) 

& (6.22) 

RHS of 
equn 
(6.20) 

5   -------- -------- -------- -------- -------- 

15   -------- -------- -------- -------- -------- 

30    -------- -------- -------- -------- 

40    4.66    

80   -------- 7.64    

In laminar flow of 
Newtonian fluids 
pressure drop and flow 
rate are proportional – 
see how this suspension 
shear thins? 


